

Figure C.4: Two plots of an impulse, generated by plot and stem.

C.1.2 Independent section

1. The sinusiodal term in each of these signals completes one cycle in 0.01 seconds. To get a reasonably smooth plot, we will need several samples in each cycle, say 20 . Thus, we set
```
>> t = -0.1:0.01/20:0.1;
>> y1 = sin(2*pi*100*t);
>> subplot(3,1,1), plot(t,y1)
>> y2 = exp(-10*t).*sin(2*pi*100*t);
>> subplot(3,1,2), plot(t,y2)
>> y3 = exp(10*t).*sin(2*pi*100*t);
>> subplot(3,1,3), plot(t,y3)
```

The resulting plot is shown in figure C.4.
2. The specified sound is constructed as follows:
$t=0: 1 / 8000: 1 ;$
$\mathrm{n}=\exp (-5 * \mathrm{t}) . * \sin (2 * \mathrm{pi} * 440 * \mathrm{t})$;
sound (n, 8000);
It is a middle A (A-440), but with a sudden attack and a gradual, exponential decay.
3. The following program constructs the requested sound:

```
t = 0:1/8000:0.5;
n = []
for frequency = [l494 440 392 440 494 494 494]
    n1 = exp(-5*t).*sin(2*pi*frequency*t);
    n = [n n1];
end
sound(n, 8000);
```

It is the first few notes of "Mary had a little lamb."
4. (a)

$$
\text { sound: Vectors } \rightarrow \text { Sounds }
$$

where Vectors is the set of row or column vectors of elements of Double.
(b) soundsc has the same domain and range.
(c)

$$
\text { plot: VectorPairs } \rightarrow \text { HorizontalSpace } \times \text { VerticalSpace } .
$$

where

$$
\text { VectorPairs }=\left\{\text { Vectors }_{N} \times \text { Vectors }_{N} \mid N \in \text { Nats } \text { and Vectors }{ }_{N}\right.
$$ is a vector with N elements from Doubles.

