
C.3. STATE MACHINES 127

C.3.3 Independent section

1. The alphabets are
Inputs � �feed� pet� time passes� absent�

Outputs � �purrs� bites� throws up� rubs� dies� absent�
The state machine is shown in figure C.7. The update of the state machine is given by the
following function

% PET - A function representing the state update of a virtual pet.
% The first argument must be in {’happy’, ’hungry’, ’dies’}
% The second argument must be in {’absent’, ’pet’, ’feed’, ’time passes’}
% The two returned values are the next state of the
% pet, and the output of the state machine.

function [newstate, out] = pet(state, in)

% The default behavior is to stutter.
newstate = state;
out = ’absent’;

switch(state)
case ’happy’

switch(in)
case ’pet’

out = ’purrs’;
case ’feed’

out = ’throws up’;
case ’time passes’

newstate = ’hungry’;
out = ’rubs’;

end
case ’hungry’

switch(in)
case ’feed’

out = ’purrs’;
newstate = ’happy’;

case ’pet’
out = ’bites’;

case ’time passes’
out = ’dies’;
newstate = ’dies’;

end
case ’dies’

out=’dies’;
end



128 APPENDIX C. LABORATORY EXERCISES SOLUTIONS

A program to execute the state machine is:

% RUNPET - Execute the virtual pet state machine

% initial state.
petstate=’happy’;

% loop forever.
while 1

% Get the user input as a string.
str=input(’enter one of absent, pet, feed, time passes: ’,’s’);

% If the user entered quit or exit, then break the loop.
if strcmp(str,’quit’) break; end
if strcmp(str,’exit’) break; end

% Update the pet.
[petstate, output] = pet(petstate, str);

% print what the pet does.
disp(output)
if strcmp(petstate, ’dies’) break; end

end

Here is a sample run:

>> runpet
enter one of absent, pet, feed, time passes: pet
purrs
enter one of absent, pet, feed, time passes: feed
throws up
enter one of absent, pet, feed, time passes: time passes
rubs
enter one of absent, pet, feed, time passes: feed
purrs
enter one of absent, pet, feed, time passes: time passes
rubs
enter one of absent, pet, feed, time passes: pet
bites
enter one of absent, pet, feed, time passes: time passes
dies
>>

2. The output alphabet for the driver machine is

Outputs� � �feed� time passes�



C.3. STATE MACHINES 129

which is a subset of Inputs, the input alphabet for the pet. Thus, this machine can be composed
in cascade with the pet. The state machine is shown in figure C.8. The state mirror those of
the pet with the same name.

The update of the state machine is given by the following function

% DRIVER - A function representing the state update of
% a state machine providing inputs to keep a virtual pet alive.
% The first argument must be in {’happy’, ’hungry’}
% The second argument must be in {’absent’, ’1’}
% The two returned values are the next state of the
% driver, and the output of the state machine.

function [newstate, out] = driver(state, in)

% Alternate producing ’time passes’ and ’feed’.
if ˜strcmp(in, ’absent’)

switch(state)
case ’happy’

out = ’time passes’;
newstate = ’hungry’;

otherwise
out = ’feed’;
newstate = ’happy’;

end
else

% The default behavior is to stutter.
newstate = state;
out = ’absent’;

end

A program to run the driver and pet for 100 iterations is

% DRIVEPET - Execute the virtual pet state machine composed
% in cascade with the driver state machine.

% initial state.
driverstate=’happy’;
petstate=’happy’;

% loop 100 times, since this is automatically driven.
for i=1:100,

% Update the state of the driver and get its output.
% The input to the driver is always ’1’.
[driverstate, petinput] = driver(driverstate, ’1’);



130 APPENDIX C. LABORATORY EXERCISES SOLUTIONS

happy hungry dies

{time passes} / rubs {time passes} / dies

{p
et

} 
/ p

ur
rs

{feed} / throws up {pet} / bites else / dies

{feed} / purrs

Figure C.7: A state machine for a virtual pet.

happy hungry

{1} / time passes

{1} / feed

Figure C.8: A state machine that provides inputs to a virtual pet.



C.3. STATE MACHINES 131

% update the state of the pet and get its output.
[petstate, output] = pet(petstate, petinput);

% Display the output of the pet.
disp(output)

end

A sample run is

>> drivepet
rubs
purrs
rubs
purrs
rubs
purrs
...


	Signals
	Defining Signals and Systems -- Solutions
	State Machine Models -- Solutions
	Composing State Machines
	Linear Systems
	Frequency Domain Solutions
	Frequency Response Solutions
	Filtering Solutions
	The Four Fourier Transforms Solutions
	Sampling and Reconstruction Solutions
	Sets and Functions
	Complex Numbers
	Laboratory Exercises Solutions
	Arrays and sound solution
	In-lab section
	Independent section

	Images solution
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control Systems Solution
	In-lab section
	Independent section

	Difference Equations Solutions
	In-lab section
	Independent section

	Differential Equations Solutions
	In-lab section
	Independent section

	Spectrum Solutions
	In-lab section
	Independent section

	Comb Filters Solution
	In-lab section
	Independent section

	Plucked String Instrument Solutions
	In-lab section
	Independent section

	Modulation and Demodulation Solution
	In-lab section
	Independent section

	Sampling and Aliasing Solution
	In-lab section





