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C.5 Difference equations

The purpose of this lab is to construct difference equation models of systems and to study their
properties. In particular, we experimentally examine stability by constructing stable, unstable, and
marginaly stable systems. We will also introduce elementary complexity measures. The principal
new Matlab skill required to develop these concepts is matrix operations.

C.5.1 In-lab section

1. Matlab is particularly good at matrix arithmetic. In this problem, we explore matrix multipli-
cation (see sidebar on page 151).
1 1

Without using Matlab, give M™, forn = 0, 1, 2, 3. Recall that by mathematical conven-
tion, for any square matrix M, M° = I, the identity matrix, so in this case,

o [10
M_[Ol.

Guess the general form of the matrix M™. That is, give an expression for each of the
elements of the matrix M™.

(a) Consider the2 x 2 matrix

(b) Use Matlab to compute M?°. Was your guess correct? Calculate a few more values
using Matlab until your guessis correct.

(c) If your guess was correct, try to show it using induction. That is, first show that your
guess for M™ is correct for some fixed n, like for example n = 0. Then assume your
guess for M™ is correct is for some fixed n, and show that it is correct for A1,

2. A vector is a matrix where either the number of rows is one (in the case of arow vector) or
the number of columnsis one (in the case of acolumn vector). Let

[}

be a column vector. We can equaly well write this b = [2, 3], where the superscript T
indicates that the row vector [2, 3] is transposed to make a column vector.

(@) Create a column vector in Matlab equal to b above. Multiply it by M, given in the
previous problem. Try forming both bA and Mb. Why does only one of these two
work?

(b) Create arow vector by transposing b. (Try hel p t ranspose or look up “transpose”
in the help desk.) Multiply this transpose by M. Try both ¥ M and Mb"'. Why does
only one of them work?
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3. Consider a 2-dimensiona difference equation system given by

Ao cos(w) —sin(w)l,b:lOl,C:U

sin(w)  cos(w) 1

—cos(w)
sin(w)

]7d:07

where w, 0 € Reals. Note that thisis similar to the systems studied in exercises10 and 14 of
chapter 5, with the differences being the multiplying constant o and the ¢ vector. Let w = /8
and plot the first 100 samples of the zero-state impulse response for the following values of

@ o=1.
(b) o =0.95.
(c) o =1.05.

(d) For which values of o isthe result periodic? What is the period? The system producing
the periodic output is called an oscillator.

(e) You have constructed three distinct difference equation systems. One of theseisastable
system, one is an unstable system, and one is amarginally stable. Which is which?
You can infer the answer from the ordinary English-language meaning of the word “ sta-
ble” What will happen if the unstable system is alowed to continue to run beyond the
100 samples you calculated?

C.5.2 Independent section

1. Inlab C.1you constructed a sound waveform f: Reals — Reals given by
Vte[0,1], f(t) =exp(—>5t)sin(2m x 440¢t).

You wrote aMatlab script that calculated samples of this waveform at a sample rate of 8 kHz.
In this lab, we will construct the same waveform in a very different way, using difference
eguations.

Construct a difference equation system with impul se response given by
Vn € Naturalsy, h(n) = exp(—5n/8000) sin (27 x 440n,/8000).

Give the matrix A, the vectors b, and ¢, and the scalar d of (5.35) and (5.36). Also give a
Matlab program that produces the first 8000 samples of thisimpulse response and playsit as
asound. Hint: You will need to understand what you did in problem3 of the in-lab section,

and you may find it useful to use the results of exercise14 in chapter 5.

2. For the system with the impulse response constructed in part1, change theinput so it consists
of an impulse every 1/5 of asecond. |.e., at an 8kH sample rate,

(n) = 1 if nisamultiple of 1600
=0 0 otherwise

Write a Matlab script that plays two seconds of sound with this input. NOTE: Thisis a
simplified model of a guitar string being repeatedly plucked. The model is justifiable on
physical grounds, although it is afairly drastic simplification.
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3. Compare the complexity of the state machine model and the one you constructed in labC.1.
In particular, assuming in each case that you generate one second of sound at an 8kHz sample
rate, count the number of scalar multiplications and additions that must be done to construct
the sound vector. In the redlization in lab C.1, you used the built-in Matlab functions exp
and si n. These functions are surprisingly expensive to compute, so count each evaluation of
exp or si n on ascalar argument as 20 multiplications and 15 additions (they are actually
typically more expensive even than this). You should find that the state machine realization
is far less expensive by this measure. Do not count the cost of the Matlab sound function,
which we can’t easily determine.
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I nstructor Verification Sheet for C.5

Name: Date:

445

1. Matrix multiplication in Matlab, and induction demonstration.

Instructor verification:

2. Matrix-vector multiplication.

Instructor verification:

3. Sinusoids with exponential envelopes; stability.

Instructor verification:
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