C.5.2 Independent section

1. The form of the desired response is the same as that in problem 3 of the in-lab section, so A, b, c, and d are given there. The impulse response is given by

$$
h(n)= \begin{cases}d, & \text { if } n=0 \\ c^{T} A^{n-1} b, & \text { if } n \geq 1\end{cases}
$$

which for the specified values of A, b, c, and d can be written (using the results of exercise as suggested in the hint)

$$
h(n)=\sigma^{n} \sin (\omega n) .
$$

To get the desired impulse response, we simply set

$$
\omega=2 \pi 440 / 8000
$$

(which has units of radians per sample), and

$$
\sigma=\exp (-5 / 8000)
$$

We can use the same function defined in the in-lab section. To get 8000 samples of the impulse response and play it as a sound we simply do

```
x = [1, zeros(1,7999)];
sound(boing(x, exp(-5/8000), 2*pi*440/8000));
```

2. To construct the input, we simply do:
```
x = repmat([1, zeros(1,1599)], 1, 10);
sound(boing(x, exp(-5/8000), 2*pi*440/8000));
```

3. In lab C. 1 we calculated one second of sound using the Matlab script
$\mathrm{t}=0: 1 / 8000: 1$;
$\mathrm{n}=\exp (-5 * t) . * \sin (2 * \mathrm{pi*} 440 * t)$;
sound ($\mathrm{n}, 8000$);
We will count only the operations in the middle line, and we will assume that 8000 , rather than 8001 samples are computed. Each sample requires one evaluation of exp and one evaluation of sin, for a total of 40 multiplications and 30 additions. Each argument requires one multiplication, and the results are multiplied, so there are 43 multiplications per sample. For 8000 samples, that implies $8000 \times 43=344000$ multiplications and $8000 \times 30=240000$ additions.
For the state machine model, examining the boing function, we see that each output sample involves the calculations given by
```
y(i) = C'*S;
s = A*s + b*x(i);
```

The first line is two multiplications and one addition. The second line is 6 multiplications and two additions. The total is therefore 8 multiplications and 3 additions per sample. For 8000 samples, that implies $8000 \times 8=64000$ multiplications and $8000 \times 3=24000$ additions. The state machine realization is considerably less expensive by this measure.

