Bill Chun Wai Hung
17508938

LAB Tu 10-1pm
20N Lab 04 Report

Lab Portion
1.

select.m

function selection = select(array)

%SELECT - take a cell array, and randomly take

%one element from the cell arrray to output.
%random index

index = floor(1 + rand*(length(array)));
%eliminate the case when rand is one

if (index == length(array) +1) index = length(array);

end
selection = array(index);

>> letters = {'a', 'b', 'c', 'd', 'e'};

 path(path, 'U:\Lab04\InLab');

for i = 1:10 x(i) = select(letters);end

>> x

%OUTPUT
x =

 Columns 1 through 7

 'b' 'd' 'c' 'e' 'd' 'c' 'a'

 Columns 8 through 10

 'e' 'c' 'd'

2.
chooserow.m
function row = chooserow(array)

%CHOOOSEROW - Chooses one of the rows and returns

% the cell array of the chosen row.

[n, m] = size(array);

%random index

index = floor(1 + rand*(n));

%eliminate the case when rand is one

if (index == n +1) index = n;

end

%grab the row of the index

row = array(index,:);
>> t{1,1} = 'upper left';

t{1,2} = 'upper right';

t{2,1} = 'lower left';

t{2,2} = 'lower right';

>> chooserow(t)

%OUTPUT
ans =

 'lower left' 'lower right'

>> chooserow(t)

ans =

 'upper left' 'upper right'

>> chooserow(t)

ans =

 'lower left' 'lower right'

3a.
catlab4.m

%CATLAB4 - the cat for lab 4

%initialize state

state = 'happy';

%infinite loop

while 1

 %prompt user for input

 str = input('Enter absent, pet, feed, or time passes: ','s');
 %quit if 'quit' or 'exit'

 if strcmp(str,'quit') break; end

 if strcmp(str,'exit') break; end
 %call possibleUpdate

 result = possibleUpdate(state, str);

 state = result{1};
 %print output

 disp(result{2})

 %quit if the cat dies

 if strcmp(state, 'dead') break; end

end

3b.

possibleUpdate.m

function result = possibleUpdate(state, input)

%initialize the result, a stuttering output

result = {state, 'absent'};
switch (state)

 case 'happy'

 switch(input)

 case 'pet'

 result = {state, 'purrs'};

 case 'feed'

 result = {state, 'throws up'};

 case 'time passes'

 result = {'hungry', 'rubs'};

 end

 case 'hungry'

 switch(input)

 case 'pet'

 result = {state, 'bites'};

 case 'feed'

 result = {'happy', 'purrs'};

 case 'time passes'

 result = {'dead', 'dies'};

 end

 case 'dead'

 result = {state, 'dies'};

end

%OUTPUT
>> catlab4
Enter absent, pet, feed, or time passes: absent

absent

Enter absent, pet, feed, or time passes: pet

purrs

Enter absent, pet, feed, or time passes: feed

throws up

Enter absent, pet, feed, or time passes: time passes

rubs

Enter absent, pet, feed, or time passes: pet

bites

Enter absent, pet, feed, or time passes: feed

purrs

Enter absent, pet, feed, or time passes: time passes

rubs

Enter absent, pet, feed, or time passes: time passes

dies

4a.
catchooselab4.m

%CATCHOOSELAB4 - the non-deterministic cat for lab 4
%initialize state

state = 'happy';
%infinite loop

while 1

 %prompt user for input

 str = input('Enter absent, pet, feed, or time passes: ','s');

 %quit if 'quit' or 'exit'

 if strcmp(str,'quit') break; end

 if strcmp(str,'exit') break; end

 %call possibleChooseUpdate

 result = chooserow(possibleChooseUpdate(state, str));

 state = result{1};

 %print output

 disp(result{2})
 %quit if the cat dies

 if strcmp(state, 'dead') break; end

end
4b.

possibleChooseUpdate.m

function result = possibleChooseUpdate(state, input)

%initialize the result, a stuttering output

result = {state, 'absent'};

switch (state)

 case 'happy'

 switch(input)

 case 'pet'

 result = {state, 'purrs'};

 case 'feed'

 result = {state, 'throws up'};

 case 'time passes'

 result = {'hungry', 'rubs'};

 end

 case 'hungry'

 switch(input)

 case 'pet'

 result = {state, 'bites'};

 case 'feed'

 result = {'happy', 'purrs';...

 'hungry', 'rubs'};

 case 'time passes'

 result = {'dead', 'dies'};

 end

 case 'dead'

 result = {state, 'dies'};

end

%OUTPUT
>> catchooselab4

Enter absent, pet, feed, or time passes: time passes

rubs

Enter absent, pet, feed, or time passes: feed

purrs

Enter absent, pet, feed, or time passes: time passes

rubs

Enter absent, pet, feed, or time passes: feed

rubs

Enter absent, pet, feed, or time passes: quit

5a.

feedCat.m

%FEEDCAT - cat state machine cascaded with the feeder
%initialize

feederState = 'happy';

catState = 'happy';
for i=1:10,

[feederState,input] = feeder(feederState, '1');
result = chooserow(possibleChooseUpdate(catState, input));

catState = result{1};

disp(result{2})

end

5b.

possibleChooseUpdate.m

function result = possibleChooseUpdate(state, input)

%initialize the result, a stuttering output

result = {state, 'absent'};
switch (state)

 case 'happy'

 switch(input)

 case 'pet'

 result = {state, 'purrs'};

 case 'feed'

 result = {state, 'throws up'};

 case 'time passes'

 result = {'hungry', 'rubs'};

 end

 case 'hungry'

 switch(input)

 case 'pet'

 result = {state, 'bites'};

 case 'feed'

 result = {'happy', 'purrs';...

 'hungry', 'rubs'};

 case 'time passes'

 result = {'dead', 'dies'};

 end

 case 'dead'

 result = {state, 'dies'};

end
5c.

chooserow.m

function row = chooserow(array)

%CHOOOSEROW - Chooses one of the rows and returns

% the cell array of the chosen row.

[n, m] = size(array);

%random index

index = floor(1 + rand*(n));

%eliminate the case when rand is one

if (index == n +1) index = n;

end

%grab the row of the index

row = array(index,:);

5d.

feeder.m

function [nextState, output] = feeder (state, input)

%feed when 1 or time passes

if ~(strcmp(input, 'absent'))

 switch(state)

 case 'happy'

 output = 'time passes';

 nextState = 'hungry';

 otherwise

 output = 'feed';

 nextState = 'happy';

 end

 else

 nextState = state;

 output = 'absent';

end
%OUTPUT
>> feedCat

rubs

purrs

rubs

purrs

rubs

purrs

rubs

rubs

dies

dies

Independent Portion

Introduction:

Create a feedback mechanism to keep the nondeterministic virtual cat state machine of the lab 4 in-lab section alive. The feedback mechanism observes the output of the cat and feed the output of the cat back to the input of the cat.
Initially we let ‘happy’ and ‘time passes as the initial state and input. The cat will move to ‘hungry’ and generate ‘rubs’ as an output. This will trigger the feeder to generate ‘feed’ as output. Then if the cat stays at the ‘hungry’ state, the feeder will continue to ‘feed’. This is a fixed point to keep the cat alive. In all, whenever the cat ‘rubs’, the feeder will always output ‘feed’ until the cat generates some other output.
1a.
catImmortal.m

%CATIMMORTAL - run the virtual cat finite state machine with a

%feedback loop to ensure the cat does not die

%initialize

driverState = 'happy';

catState = 'happy';

for i=1:10

 %feed or time passes base on the state

 in = feeder(driverState);

 %what the cat decided to do with feed or time passes

 catOut = chooserow(possibleChooseUpdate(catState, in));

 catState = catOut{1};

 out = catOut{2};

 %driver state should be the same as the cat state

 driverState = catState;

 driverOut = feedbackUpdate(driverState, out);

 driverState = driverOut{1};

 disp(out)

end

1b.
feeder.m

%FEEDER - the output of the non-deterministic cat

%(just like my cat at home)

function out = feeder (state)

switch(state)

 case 'hungry'

 out = 'feed';

 otherwise

 out = 'time passes';

end

1c.

feedbackUpdate.m

%FEEDBACKUPDATE - the output of the update function is a pair of 1x2 cell array

%with format [state, output]

function out = feedbackUpdate(state,in)

%initialize to a stuttering output

out = {state, 'absent'};

if ~strcmp(in, 'absent')

 switch(state)

 case 'happy'

 if strcmp(in, 'purrs')

 out = {'happy', 'time passes'};

 else

 out = {'hungry', 'time passes'};

 end

 otherwise

 if strcmp(in, 'purrs')

 out = {'happy', 'feed'};

 else

 out = {'hungry', 'feed'};

 end

 end

end

1d.

chooserow.m

function row = chooserow(array)

%CHOOOSEROW - Chooses one of the rows and returns

% the cell array of the chosen row.

[n, m] = size(array);

%random index

index = floor(1 + rand*(n));

%eliminate the case when rand is one

if (index == n +1) index = n;

end

%grab the row of the index

row = array(index,:);

1e.

possibleChooseUpdate.m

function result = possibleChooseUpdate(state, input)

%initialize the result, a stuttering output

result = {state, 'absent'};

switch (state)

 case 'happy'

 switch(input)

 case 'pet'

 result = {state, 'purrs'};

 case 'feed'

 result = {state, 'throws up'};

 case 'time passes'

 result = {'hungry', 'rubs'};

 end

 case 'hungry'

 switch(input)

 case 'pet'

 result = {state, 'bites'};

 case 'feed'

 result = {'happy', 'purrs';...

 'hungry', 'rubs'};

 case 'time passes'

 result = {'dead', 'dies'};

 end

 case 'dead'

 result = {state, 'dies'};

end

%OUTPUT

>> catImmortal

rubs

purrs

rubs

rubs

rubs

purrs

rubs

purrs

rubs

purrs
Conclusion

If a nondeterministic state machine (the cat in this case) is the second stage of a cascade composition (composition of the state machines from the lab portion), the result is unpredictable. This is why the cat dies at the end of lab portion. So we need a state machine (feeder) to take the output of the nondeterministic state machine output (rubs) to prevent the cat from dying.
