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EECS 20N Lab 7 Report
Introduction
The purpose of this lab is to examine the frequency domain content of signals. Two methods will be used. The first method will be to plot the discrete Fourier series coefficients of finite signals. The second will be to plot the Fourier series coefficients of finite segments of time-varying signals, creating what is known as a spectrogram.
In-Lab Analysis

1a. 
8000 samples of an 800Hz sinusoid sampled at 8kHz. I use the sound() function to listen to the sound.

t = [0:1/8000:1-1/8000];
x = sin(2*pi*800*t);

 sound(x)
1b.
Next the plot for the sinusoid is generated by fourierSeries() function

[Ax, Phix] = fourierSeries(x);

frequencies = [0:8000/2];

plot(frequencies, Ax);
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The horizontal axis is frequency in hertz, and vertical axis is fourier series coefficient. 

2a. First listen to the chirp

 y = sin(2*pi*800*(t.*t));

>> sound (y)
2b. Then plot the fourier series coefficient

t = [0:1/8000:1-1/8000];

frequencies = [0:8000/2];

y = sin(2*pi*800*(t.*t));

[Ay, Phiy] = fourierSeries(y);

plot(frequencies, Ay);
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Horizontal axis is frequency in Hertz, vertical axis is fourier series coefficients.

The frequency is from 0 to 1600 Hz. This is because the frequency range of the instantaneous frequency is from 0 to 1600 Hz. w(t) = d/dt(2*pi*800t^2)= 4*pi*800t, so the instantaneous frequency = 4*pi*800/(2*pi) = 1600 Hz

The plot explains why the sound of a chirp is louder as the pitch goes up.

3a. Listen to the sound z.

t = [0:1/8000:1-1/8000];

y = sin(2*pi*800*(t.*t));

z = y(8000:-1:1);

sound(z)
3b. Then plot z

frequencies = [0:8000/2];

[Az, Phiz] = fourierSeries(z);

plot(frequencies, Az);
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Horizontal axis is frequency in Hertz, vertical axis is fourier series coefficients.

Part 2 and part 3 gives graphs that look the same, but the sound of part 3 is definitely different from the one from part 2.
The different of sound must be caused by the phase of the signal that is not plotted in the graph.

4a. Plot the signal of the spectrum given, function y. Using 400 of the 8000 available sample, showing 30 distinct fourier series coefficients.
t = [0:1/8000:1-1/8000];

y = sin(2*pi*800*(t.*t));

waterfallSpectrogram(y, 8000, 400, 30);
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Then plot the graph from function z in part 3.
Fig  of z. [image: image5.emf]0
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The figure of y starts off near zero, and the frequency goes up as time increases. The figure of z starts off near 1600 Hz, and the frequency goes down as time increases.

The signal of y goes from low (0Hz) to high frequency (1600Hz), while the signal of z goes from high to low frequency.
5a. Plot the spectrum of the given signal y.

y = sin(2*pi*800*(t.*t));

specgram(y,512,8000);
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5b. Try the useful colormap: colormap(hot);
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5c. Plot the spectrum for z
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6a. Download the voice file and run the sample code. This is “This is the sound of my voice”.
y = auread('voice.au');

soundsc(y)

subplot(2,1,1); specgram(y,1024,8000,[],900)

subplot(2,1,2); plot(y)
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6b. Do the same for gong.au

y = auread('gong.au');

soundsc(y)

subplot(2,1,1); specgram(y,1024,8000,[],900)
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subplot(2,1,2); plot(y)
Independent Analysis
1. 
reconstruct.m
function x = reconstruct(magnitude, phase)
% RECONSTRUCT - Given a vector of magnitudes and a vector
% of phases, construct a signal that has these magnitudes
% and phases as its discrete Fourier series coefficients.
% The arguments are assumed to have odd length, p/2 + 1,
% and the returned vector will have length p.
p = 2 * (length(magnitude) -1);
wo = 2 * pi / p;
x = zeros (1, p);
for n = 0 : p - 1
    for k = 0 : length (magnitude) - 1
        x(n+1) = x(n+1) + magnitude(k+1) * cos(k*wo*n + phase(k+1));
    end
end
plot(x);
command window
t = [0:1/8000:1-1/8000];

>> y = sin(2*pi*800*(t.*t));

>> [A, phi] = fourierSeries(y);

>> plot (y - reconstruct(A, phi));
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 8000 samples are plotted. First, the Fourier series coefficients (magnitude and phase) are calculated, and then the error of the reconstruction is generated by reconstruct.m. The error is usually smaller than 1x10^-12.
2.

3.

f810 = cos ( 2*pi*810*t);
f790 = cos ( 2*pi*790*t);

sound (f810 + f790)

plot(f810+f790)

z = (f810(1:801) + f790(1:801));

plot(z);
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The resultant wave have the so called “beat frequency” of 20Hz, which is the difference between two frequencies. Becaues this is only 2 cycles in a 1/10s diagram, the period is 1/20s, and that is why we hear the beat. The average period is within this period. As a result, we see a 800Hz wave enveloped in a 20Hz wave. A characteristic of the resultant wave is that as time varies, both amplitude of 2 waves change. Mathematically, the wave can be expressed by 2cos(wct)cos(wdelta*t), which 2cos(wct) indicates the amplitude varies in the envelop, and the envelop wave is described by cos(wdelta*t).

4.

The period in part 3 is 1/10 sec, so the fundamental frequency is 20*pi rad/sec.
Command window

[A, phi] = fourierSeries(f810+f790);

figure; subplot(2, 1, 1);
specgram((f790 + f810), 64, 8000)
;
subplot (2,1,2); plot ([0:4000], A);
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64 is chosen because it is easier to interpret. There are 20 warbles in this period. The specgram better reflects perception. The specgram shows which frequencies are used more intensively at that time whereas the other frequency plot indicates only two components with amplitude of 1. The frequency components in the frequency plot, but the spectrum plot shows the actual frequency at real time.
Conclusion:

During this lab, I learned to use fourier series to represent a discrete-time signal, and to reconstruct a discrete-time signal by using the amplitude and phase coefficients. If we want to transmit a signal, instead of sending the whole signal, we can just send out the fourier series coefficient. In addition, we are able toe receive a signal that is represented by fourier series coefficients, and reconstruct the original singal.
