CS 61A Scheme Midterm 1 Cheat Sheet.

<word> is like 'word

<sentence> is like '(a b c)

1. (member? <word> <sentence>)

2. (word <word> <word>)

3. (define (<name> <formal parameters>) <body>) [SICP 1.1.4]

4. ((equal? <word/sentence> <word/sentence>) <true procedure>)

5. (cond ((<condition>) (<true procedure>))

 ((<condition>) (<true procedure>))

 (else (<false procedure>))

)

6. (if (<condition>) (<true procedure>) (<false procedure>))

7. (sentence <word/sentence> <word/sentence> ...)

 (se <word/sentence> <word/sentence> ...)

8. (butfirst <word/sentence>)

9. (butlast <word/sentence>)

10. (= <number> <number>)

11. ((empty? <word/sentence>) <true procedure>)

12. (count <word/sentence>)

13. (last <word/sentence>)

14. (<= <number> <number>)

15. (and (<condition>) (<condition>) ...)

16. (or (<condition>) (<condition>) ...)

17. (not <condition>)

18. (abs <number>)

19. (sqrt <number>)

20.

21. (expt <number> <number>)

22. (lambda (<formal parameters>) <procedure>) [1.3.2] [lecture 3, special form]

23. (let ((<variable> (<procedure>)

 (<variable> (<procedure>) (...)

)

 <body>)

 ;(let ((<var> <exp>)) <body>) ---> ((lambda (<var>) <body>) <exp>) [3.23]

24. (every <procedure> <sentence/word>) [high order function]

25. (number? <anything>) ;returns #t if the argument is a number

26. (floor <number>)

27. (ceiling <number>)

28. (prime? <number>)

29. (keep <predicate> <sentence/word
>) [Lecture 7, high order function]

30. (nth <number> <sentence>), (nth 0 '(1 2 3)) -> 1 [lecture 7]

31. (define <pair name> (cons <any> <any>))

32. (car <pair name>)

33. (cdr <pair name>)

34. (list <any> <any>...) [SICP 2.2.1]

35. (let* ((<variable> (<procedure>)

 (<variable> (<procedure>)

)

 <body>); like every let

36. (append <list> <list> ...) ;return a list of elements

37. (map <procedure> <list>)

38. (length <list>)

39. (filter <predicate> <list>)

40. (pair? <any>)

41. (atom? <anything not a list>)

42. (remainder <number> <number>)

43. (quotient <number> <number>)

44. (gcd <number> <number> <number> ...)

45. (random <number>)

46. (set! <name> <new-value>)

47. (begin <exp1> <exp2> ... <expk>)

48. ((eq? <thing1> <thing2>) <expression>) ;test if it is the same as a pointer

49. (put <op> <type> <item>)

50. (get <op> <type>) [2.43]

51. (assoc <word> <list of pairs>) ; (assoc 'a ((b d) (e 3) (a 7))) -> (a 7), #f is not found

52. (random n) ;returns a number between 0 and n

53. (define-class (<class name> <instantiation variables>)

54. (method (<methodname> <args>)

55. (usual <word>) ;call the immediate parent method

56. (set! <var><var>) ; special form

57. (set-car! <pair>) ; not special form

58. (set-cdr! <pair>) ; not special form

59. (vector-ref <vector> <index>)

60. (vector-set! <vector> <index> <anything>)

61. (vector-length <vector>)

62. (stream-car <stream>)

63. (stream-cdr <stream>)

64. (stream-null? <stream>)

65. (cons-stream <procedure> <procedure>) ;special form where the 2nd procedure is delayed

66. (cons-stream <things> <stream>) ;a special form

67. (show-stream <stream>) or (ss <stream> <num>)

68. (interleave <stream> <stream>) ;not a special form, may go into infinite loop

69. (append-stream <stream> <stream>)

70. (stream-map <procedure> <thing> <steram>)

71. (stream-filter

72. (stream-append <stream> <stream>) ;the 1st stream has to be finite

73. (delay <procedure>) ;special form, same thing as (lambda () <exp>)
74. (amb

75. (require

76. (try-again
Utility Functions

1. close-enough?

(define (close-enough? x y)

 (< (abs (- x y)) 0.001))

2. sort [LEC 5]

(define (sort sent)

 (if (empty? sent)

 `()

 (insert (first sent)

 (sort (bf sent)))))

(define (insert num sent)

 (cond ((empty? sent) (se num sent))

 ((< num (first sent))

 (se num sent))

 (else

 (se (first sent)

 (insert num (bf sent))))))

;This simplifies to (1/2)N(N-1).

3. Open/Close Parenthesis

;#t if open parentheses equals to close parentheses

(define (parenok? w)

 (define (check v open)

 (cond ((empty? v) (= open 0))

 ((equal? (first v) '"(") (check (bf v) (+ open 1)))

 ((equal? (first v) '")") (check (bf v) (- open 1)))

 (else (check (bf v) open))))

 (check w 0))

4. CONS, CAR, CDR [2.1.4]

(define (cons x y)

 (define (dispatch m)

 (cond ((= m 0) x)

 ((= m 1) y)

 (else (error "Argument not 0 or 1 -- CONS" m))))

 dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

5.

LIST <-> SENTENCE

map <-> every

null? <-> empty?

car <-> first

cdr <-> butfirst

filter <-> keep

6.1. MAP, the every for list [2.2.1]

(define (map proc items)

 (if (null? items)

 nil

 (cons (proc (car items))

 (map proc (cdr items)))))

(map abs (list -10 2.5 -11.6 17))

(10 2.5 11.6 17)

(map (lambda (x) (* x x))

 (list 1 2 3 4))

(1 4 9 16)

6.2 MAP, add one to every numbers in the list[Lecture 10]

(define (inc x) (+ x 1))

(define (inc-deep-list DL)

 (map (lambda (x) (if (list? x)

 (inc-deep-list x)

 (inc x)))

 DL))

(inc-deep-list '(0 (1 2 3) 4))

(1 (2 3 4) 5)

6.3 Map, general function

...

7. FOR-LOOP, HW 2a

(define (cont-frac n d k)

 (define (helper i)

 (if (> i k)

0

(/ (n i) (+ (d i)

 (helper (+ i 1))))))

 (helper 1))

8. INSERT-AFTER a word into a list, error if the item is not found

(define (insert-after item mark lst)

 (if (equal? (car lst) mark)

 (cons (car lst) (cons item (cdr lst)))

 ;(append (list car lst) item) (cdr lst))

 (cons (car lst) (insert-after item mark (cdr lst)))

);if

);define
9. LIST

(define (list? L)

 (cond ((null? L) #t)

 ((pair? L) (list? (cdr L)))
 (else #f)))
Note for midterm

High Order Functions=every/keep/accumulate
1.1. KEEP
> (keep (lambda (x) (= x 1)) ‘(1 2 1 2))

(1 1)

 (define (keep pred sent)

 (cond ((empty? sent) ‘())

 ((pred (first sent))

 (se (first sent)

(keep pred (bf sent))))

 (else

 (keep pred (bf sent)))))
;when parameter is sent

(define (keep proc sent)

(if (empty? sent)

 '()

(if (proc (first sent))

 (se (first sent) (keep proc (bf sent)))

 (keep proc (bf sent)))))
(accumulate combiner null-value term a next b)

> (accumulate * 1 (lambda (x) x)
 1 (lambda (x) (+ x 1)) 5)

120

> (accumulate se `(foo) (lambda (x) x)

 1 (lambda (x) (+ x 1)) 5)

(1 2 3 4 5 foo)

1.2 KEEP
> (keep (lambda (x) (or (even? x) (equal? x 1)))
‘(1 2 3 4))

(1 2 4)

> (keep (lambda (x) (member? x ‘(x y z)))

‘syzygy)

yzyy
2. ACCUMULATE
;; recursive form
(define (accumulate combiner null-value term a next b)
 (if (> a b)
 null-value
 (combiner (term a)
 (accumulate combiner null-value term (next a) next b))))

;; iterative form
(define (accumulate combiner null-value term a next b)
 (define (iter a result)
 (if (> a b)
 result
 (iter (next a) (combiner (term a) result))))
 (iter a null-value))

;; sum and product

(define (sum term a next b) (accumulate + 0 term a next b))

(define (product term a next b) (accumulate * 1 term a next b))
(define (accumulate op null-val sent)

 (if (empty? sent)

 null-val

 (op (first sent)

 (accumulate op null-val (bf sent)))))

> (accumulate + 0 `(2 5 3 4 1))

15

>(accumulate word `d `(a b c))

abcd
3. > EVERY

(define (every f sent)
 (if (empty? sent)
 '()
 (se (f (first sent))
 (every f (butfirst sent)))))
(every (lambda (x) (word x ‘s))

‘(tricky hobbits))

(trickys hobbitss)

> (every (lambda (x) (+ x 1)) ‘1234)

(2 3 4 5)
(every (lambda (x) (word x 's)) 'tricky)
(ts rs is cs ks ys)
Special Forms

1. Define

2. If

3. Cond

4. Lambda

Iterative Example

(define (exp a b)

(if (= b 0)

1

(* a (exp a (- b 1)))))
Recursive Example

define (exp a b)

(define (helper count result)

(if (= count b)

result

(helper (+ count 1) (* a result))))

(helper 0 1))
